首页> 外文OA文献 >Use of sensitive, broad-spectrum molecular assays and human airway epithelium cultures for detection of respiratory pathogens
【2h】

Use of sensitive, broad-spectrum molecular assays and human airway epithelium cultures for detection of respiratory pathogens

机译:使用灵敏的广谱分子测定法和人气道上皮培养物检测呼吸道病原体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rapid and accurate detection and identification of viruses causing respiratory tract infections is important for patient care and disease control. Despite the fact that several assays are available, identification of an etiological agent is not possible in ∼30% of patients suffering from respiratory tract diseases. Therefore, the aim of the current study was to develop a diagnostic set for the detection of respiratory viruses with sensitivity as low as 1–10 copies per reaction. Evaluation of the assay using a training clinical sample set showed that viral nucleic acids were identified in ∼76% of cases. To improve assay performance and facilitate the identification of novel species or emerging strains, cultures of fully differentiated human airway epithelium were used to pre-amplify infectious viruses. This additional step resulted in the detection of pathogens in all samples tested. Based on these results it can be hypothesized that the lack of an etiological agent in some clinical samples, both reported previously and observed in the present study, may result not only from the presence of unknown viral species, but also from imperfections in the detection methods used.
机译:快速准确地检测和识别引起呼吸道感染的病毒对于患者护理和疾病控制很重要。尽管有几种检测方法可供使用,但在约30%患有呼吸道疾病的患者中无法确定病因。因此,本研究的目的是开发一种诊断试剂盒,用于检测呼吸道病毒,每个反应的敏感性低至1-10份。使用训练有素的临床样本集对测定的评估表明,在约76%的病例中鉴定出了病毒核酸。为了提高测定性能并促进新物种或新菌株的鉴定,将完全分化的人气道上皮培养物用于预扩增感染性病毒。该附加步骤导致在所有测试样品中检测到病原体。基于这些结果,可以假设先前报告和本研究中观察到的某些临床样品中缺乏病原体可能不仅是由于未知病毒种类的存在,而且还可能是由于检测方法的不完善所致。用过的。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号